
How to Integrate Apps Manager System to your app

Get Started

This guide is for publishers who want to monetize an Android app with Apps

Manager system.

Integrating the Apps Manager AdsSdk Module into an app is the first step toward displaying

ads with various platform which is managed remotely for better app management and

earning revenue. Once you've integrated the Module, you can display or control an ad

remotely and follow the steps to implement it.

Prerequisites

 Use Android Studio 3.2 or higher
 minSdkVersion 16 or higher
 compileSdkVersion 28 or higher

Android Side Setup:

Import Apps Manager AdsSdk as module to your App

(Note: Open Android Studio->File->New->Import Module)

Set AdsSdk path and click finish

(Note: make sure if you use Unity platform for ad then you need to import AdsSdk with

unity-ads module also otherwise you need only AdsSdk for ad setup)

Update project-level build.gradle

allprojects{
 repositories {
 google()
 jcenter()
 maven{ url 'https://jitpack.io' }

 /* maven {url "http://dl.appnext.com/"} in case if you use
 Appnext platform */

 }
}

Next, open the app-level build.gradle file for your app, and look for a "dependencies"
section.

Update app-level build.gradle

android {
 defaultConfig {
 ...
 minSdkVersion 16
 targetSdkVersion 28
 multiDexEnabled true
 }
 ...
}

dependencies {
 implementation fileTree(dir: 'libs', include: ['*.jar'])
 implementation 'androidx.appcompat:appcompat:1.0.2'
 implementation project(path: ':AdsSdk')
}

Add the line in bold above, in which enable multiDex true and implements module to
dependencies section. Once that's done, save the file and perform a Gradle sync.

Note: If you face any problem while import module then create a new module and paste all
the code of AdsSdk into your module.

After successfully adding AdsSdk module to your App, you need to follow
step for ad placement shown in demo app

Initialize the Mobile AdsSdk

Extends your SplashActivity with ADS_SplashActivity

Before loading ads, have your app initialize the Mobile Ads SDK by calling ADSinit() which

initializes the SDK and calls back a completion listener once initialization is complete (or

after a 30-second timeout). This needs to be done only once, ideally at app launch.

(Extends your launcher activity with ADS_SplashActivity and paste code as shown in below

example from your ad integration demo provided by Apps Manager)

package ----;

import com.pesonal.adsdk.ADS_SplashActivity;
import com.pesonal.adsdk.BuildConfig;
import com.pesonal.adsdk.getDataListner;

import org.json.JSONObject;

import java.util.Arrays;

public class SplashActivity extends ADS_SplashActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);
 getWindow().setFlags(1024, 1024);
 setContentView(R.layout.activity_splash);

 ADSinit(SplashActivity.this, getCurrentVersionCode(), new
getDataListner() {
 @Override
 public void onSuccess() {

 //Call after Successfull responce from server
 // After response you can navigate your activity from splash
to other
 startActivity(new Intent(SplashActivity.this,
MainActivity.class));
 finish();
 }

 @Override
 public void onUpdate(String url) {

 //Show Version update dialog which is manage remotely
 showUpdateDialog(url);
 }

 @Override
 public void onRedirect(String url) {

 //Show redirect dialog which is manage remotely
 showRedirectDialog(url);
 }

 @Override
 public void onReload() {

 //Reload activity in case of internet failure
 startActivity(new Intent(SplashActivity.this,
SplashActivity.class));
 finish();
 }

 @Override
 public void onGetExtradata(JSONObject extraData) {

 // Get any extra data send from server
 }
 });

 }

Note : You can get complete source code of showUpdateDialog(), showRedirectDialog() and

getCurrentVersionCode() from Ad Implementation Demo provided by Apps Manager.

Select an ad format

The Mobile Ads SDK is now imported and you're ready to implement an ad. AdMob offers a

number of different ad formats, so you can choose the one that best fits your app's user

experience.

Interstitial

Full-screen ads that cover the interface of an app until closed by the user. They're best used

at natural pauses in the flow of an app's execution, such as between levels of a game or just

after a task is completed.

Load an Ad

package ...

import static com.pesonal.adsdk.AppManage.ADMOB_I1;
import static com.pesonal.adsdk.AppManage.FACEBOOK_I1;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

AppManage.getInstance(MainActivity.this).loadInterstitialAd(this,ADMOB_I1,FACEBOOK_I1);

 }
}

Note : Here ADMOB_I1 and FACEBOOK_I1 is interstitial ad id come from server. Here both

ads are load at same time. If you want to load and display single ad then other ad id

parameter will be blank.

One time ad load

 If you use single ad id in full application then, you need to load an ad one time only after

getting successful response. In this case, if admob is failed to load or display then facebook

will automatically display in place of admob.

Here, if admob is failed to load ad, then admob try to load ad again and Apps Manager go

for the next ad platform sequence which is ready to show ad decided from server.

Actvity wise ad load

If you use multiple ad id or want to load ad everytime before show, then you need to call

loadInterstitialAd() in every onCreate() of each activity.

While you load ad in every activity, then remove loadAd() from displayInterstitialAd()

in AppManage.java .

Example :

 For Admob remove line

 interstitial1.loadAd(new AdRequest.Builder().build());

For Facebook remove line

 fbinterstitialAd1.loadAd();

For AppNext remove line

 appnextinterstitialAd.showAd();

Show the Ad

btn_Interstitial.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 AppManage.getInstance(MainActivity.this).showInterstitialAd(MainActivity.this, new
AppManage.MyCallback() {
 public void callbackCall() {
 Intent intent = new Intent(MainActivity.this, SecondActivity.class);
 startActivity(intent);

 }
 },"",AppManage.app_mainClickCntSwAd);

//app_mainClickCntSwAd is set from server, if not set then default value is 1
//app_innerClickCntSwAd is set from server, if not set then default value is 1

 }
});

Note : If user want too integrate ad based on number of click then developer have option to

use app_mainClickCntSwAd and app_innerClickCntSwAd which is managed remotely.

Here in callbackcall() first parameter is blank which indicates that ad will be displayed

randomly setted from Apps Manager System which means in this button any platform ad

will be display as per sequence or in alertnate manner.

Here if you want to display specific ad then pass ad platform like AppManage.FACEBOOK or
AppManage.ADMOB or anyother as per your need.

btn_Interstitial.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 AppManage.getInstance(MainActivity.this).showInterstitialAd(MainActivity.this, new
AppManage.MyCallback() {
 public void callbackCall() {

 Toast.makeText(MainActivity.this,"Perform any operation after
ad",Toast.LENGTH_SHORT).show();
 }
 },AppManage.ADMOB,AppManage.app_mainClickCntSwAd);
 }
});

Native

Load & Show an Ad

Here developer have very easy & common method for load and show native ad from any

platform.

For load and display native ad, developer need to pass contatiner and id of ad platform. If

you want to display native ad with specific platform then pass empty parameter to
showNative().

package ---;

import androidx.appcompat.app.AppCompatActivity;
import static com.pesonal.adsdk.AppManage.ADMOB_N1;
import static com.pesonal.adsdk.AppManage.FACEBOOK_N1;

public class MainActivity extends AppCompatActivity {

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

AppManage.getInstance(MainActivity.this).showNative((ViewGroup)
findViewById(R.id.native_container), ADMOB_N1, FACEBOOK_N1);
 }

}

Note : Here ADMOB_N1 and FACEBOOK_N1 is native ad id come from server. Here both ads

are not load at same time but whether one ad is failed to load then Apps Manager

automatically go with other platform ad. If you want to load and display single ad then

other ad id parameter will be blank.

AppManage.getInstance(MainActivity.this).showNative((ViewGroup)
findViewById(R.id. native_container), "", FACEBOOK_N1);

native_container is container for native ad. Here developer needs to pass XML

container as per own requirement.

Example:

<LinearLayout
 android:id="@+id/native_container"
 android:layout_width="match_parent"
 android:layout_height="250dp"
 android:layout_marginBottom="@dimen/_10sdp"
 android:orientation="vertical" />

Banner

Load & Show an Ad

Here developer have very easy & common method for load and show banner ad from any

platform.

For load and display banner ad, developer need to pass contatiner and id of ad platform. If

you want to display banner ad with specific platform then pass empty parameter to
showBanner().

Example:

package ---;

import androidx.appcompat.app.AppCompatActivity;
import static com.pesonal.adsdk.AppManage.ADMOB_B1;
import static com.pesonal.adsdk.AppManage.FACEBOOK_B1;

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 AppManage.getInstance(MainActivity.this).showBanner((ViewGroup)
findViewById(R.id.banner_container), ADMOB_B1, FACEBOOK_B1);
 }

}

Note : Here ADMOB_B1 and FACEBOOK_B1 is banner ad id come from server. Here both

ads are not load at same time but whether one ad is failed to load then Apps Manager

automatically go with other platform ad. If you want to load and display single ad then

other ad id parameter will be blank as shown below.

AppManage.getInstance(MainActivity.this). ((ViewGroup)
findViewById(R.id.banner_container), "", FACEBOOK_B1);

banner_container is container for banner ad. Here developer needs to pass XML

container as per own requirement.

Example:

<LinearLayout
 android:id="@+id/banner_container"
 android:layout_width="match_parent"

 android:layout_height="wrap_content"
 android:layout_marginBottom="@dimen/_10sdp"
 android:layout_alignParentBottom="true"
 android:orientation="vertical" />

Native Banner

Load & Show an Ad

Here developer have very easy & common method for load and show native banner ad

from any platform.

For load and display banner ad, developer need to pass contatiner and id of ad platform. If

you want to display native banner ad with specific platform then pass empty parameter to
show_NATIVEBANNER().

Example:

package ---;

import androidx.appcompat.app.AppCompatActivity;
import static com.pesonal.adsdk.AppManage.ADMOB_B1;
import static com.pesonal.adsdk.AppManage.FACEBOOK_NB1;

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 AppManage.getInstance(MainActivity.this).showNativeBanner((ViewGroup)
findViewById(R.id.banner_container), ADMOB_B1, FACEBOOK_NB1);
 }

}

Note : Native banner is only for facebook so here ADMOB_B1 is banner ad id and

FACEBOOK_NB1 is native banner ad id come from server. Here both ads are not load at

same time but whether one ad is failed to load then Apps Manager automatically go with

other platform ad. If you want to load and display single ad then other ad id parameter will

be blank as shown below.

AppManage.getInstance(MainActivity.this).showNativeBanner((ViewGroup)
findViewById(R.id.banner_container), "", FACEBOOK_NB1);

banner_container is container for banner ad. Here developer needs to pass XML

container as per own requirement.

Example:

<LinearLayout
 android:id="@+id/banner_container"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginBottom="@dimen/_10sdp"
 android:layout_alignParentBottom="true"
 android:orientation="vertical" />

Rewarded Ads

Load & Show an Ad

Here, predefined coding of rewarded ads is not come with AdsSdk because in many case all

application is not use with rewarded ads. Developer needs to use rewarded ad as per own

requirments. Apps Manager provides only ad id of rewarded ads which is come from server

How to customize AdsSdk

AppManage class contains all settings of AdsSdk related settings. Make sure not to

change anything into SDK otherwise its not work properly.

If developer needs to update or change anything in AdsSdk, then App Manage class is

responsible for settings and response which is come from server. Whenever any ad class or

coding is change in that case developer can easily change all things with own way.

Make sure before and after add or remove any ad network, please refer exisiting ad

network coding and based on that you can add or remove ad network.

Interstitial in AdsSdk

For adding or removing any interstitial ad loadInterstitialads() from AppManage.java in
AdsSdk is responsible. Based on existing coding please add or remove any ad platform.
loadInterstitialads() loads interstitial ad of various platform.

For display ad, turnInterstitialAd() and displayInterstitialAd() from AppManage.java in
AdsSdk is responsible. Make sure before change anything refer other code which work
perfectly and then based on that make any changes.

Native in AdsSdk

For adding or removing any native ad displayNative() from AppManage.java in AdsSdk is

responsible. Based on existing coding please add or remove any ad platform after proper

refer.

Here in showNative() first load native ad and then same function is work for display ad

after successful ad load. So call showNative() for both task as load and show as per

requirments.

Banner in AdsSdk

For adding or removing any banner ad displayBanner() from AppManage.java in AdsSdk is

responsible. Based on existing coding please add or remove any ad platform after proper

refer.

Here in showBanner() first load banner ad and then same function is work for display ad

after successful ad load. So call showBanner() for both task as load and show as per

requirments.

Native Banner in AdsSdk

For adding or removing native banner ad displayNativeBanner() from AppManage.java in

AdsSdk is responsible. Based on existing coding please add or remove any ad platform after

proper refer.

Here in showNativeBanner() first load native banner ad and then same function is work for

display ad after successful ad load. So call showNativeBanner() for both task as load and

show as per requirments.

